
DEPARTMENT OF THE INTERIOR 

U.S. GEOLOGICAL SURVEY

National Petroleum Assessment

Western Basin and Range Province

(Province 83)

By Harry E. Cook1

Open-File Report 

87-450L

.S. Geological Survey, 345 Middlefield Rd., MS 999, Menlo Park, CA

This report is preliminary and has not been reviewed for conformity with U.S. 

Geological Survey editorial standards and stratigraphic nomenclature.

1987



INTRODUCTION 

Basin Location and Size

Province 83 encompasses about one-half of Nevada (Fig. 1). To call this 

province a single basin is obviously a misnomer. This province represents a 

collage of diverse basins and basin types that evolved in response to a number 

of sedimentologic and tectonic episodes along the western margin of North 

America (Figs. 2,3).

QUALITATIVE EVALUATION OF HYDROCARBONS

Within Province 83 the possibility of commercial accumulations of 

hydrocarbons is low. However, one area in Pershing County (Dixie Valley, 

lat. 40°N. and long. 117°45 fW.) has been identified as a speculative play. 

This area is attractive enough to warrant additional field mapping and sam 

pling the potential source and reservoir facies. This play, the Dixie Valley 

Play, is discussed below.

REGIONAL GEOLOGIC FRAMEWORK

This section will attempt to outline the regional structural setting and 

geologic history of the Cordillera. To gain a true perspective of the geo 

logic evolution of western Nevada, one must look beyond this man-made boundary 

into eastern Nevada and California. The regional tectonics and stratigraphy 

of these three Cordilleran provinces have an intimate interwoven genesis that 

dates back to the Proterozoic (Figs. 2-6). Plate tectonic theory will be
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liberally used to understand the complex geologic history of the Cordillera. 

This theory appears to offer unique unifying insights into the origin of the 

diverse tectonic-sedimentologic regimes in the provinces of Nevada and 

California.

Five tectonic events shaped the western margin of North America in the 

vicinity of California and Nevada (Fig. 5). Some of these events are confined 

to each respective province, but some events were of broader scale, and 

affected the entire western margin of North America simultaneously.

Event 1: Proterozoic Crystalline Basement

Strontium and neodymium isotopes have been used to define Precambrian 

crystalline basement of Proterozoic age. This continental crust is inferred 

to extend as far west as central Nevada (Fig. 7, ISr = 0.706) (Kistler, 1974; 

Farmer and DePaolo, 1983). Extensive metamorphism and intrusion of this base 

ment occurred between 1,650 and 1,750 Ma (King, 1969).

Event 2: Late Precambrian Through Devonian  

Continental Rifting and Passive Margin Development

The Proterozoic continent was broken by a major rifting event near the 

end of the Precambrian (Figs. 8,9) (Stewart, 1972; Stewart and Suczek, 

1977). Until the end of the Devonian a passive continental margin comprised 

western North America from Alaska to southeastern California (Figs. 10,11) 

(Churkin, 1974; Cook and Taylor, 1975). This rifting and initial development 

of the Cordilleran miogeocline is not well dated directly, but stratigraphic 

backstripping indicates that rifting happened between 625 and 550 ma (Bond and
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Kominz, 1984). On the basis of sedimentologic and biostratigraphic analyses 

between Asia and western North America, Cook and Taylor (1975) established 

that this rifting event occurred no later than about 520 ma.

This passive continental margin became the site of 5,000 m of shoal-water 

carbonate platform and basinal sediments from the Cambrian through the 

Devonian (Figs. 12,13) (Cook and Taylor, 1983; Cook and Taylor, 1987).

Event 3: Late Devonian Through Triassic Terrane Accretion

Two major accretionary events occurred during the Late Devonian-Early 

Mississippian (Antler orogeny, Roberts et al., 1958; Speed, 1982,1983), and 

the Permian-Triassic (Sonoma orogeny, Sllberling and Roberts, 1962; Speed, 

1979,1982,1983) (Figs. 4,5,12). During the Antler orogeny the Roberts Moun 

tains allochthon oceanic rocks were thrust eastward at least 100 km over the 

continental slope and platform margin carbonates. This event formed the 

Antler erogenic highlands and foreland basin (Figs. 4,12,14,15). Similarly, 

during the Sonoman orogeny, oceanic rocks in the Golconda allochthon (Figs. 

4,12) were thrust eastward about 50-75 km over previously deformed continen 

tal-margin sediments (Fig. 12). The Sonoman orogeny, however, involved less 

crustal shortening than the Antler orogeny, and did not develop a foreland 

basin, as was the case during the Antler orogeny (Fig. 16).

The tectonic model that is commonly called upon to explain the distri 

bution of lithofacies in both orogenies is that of a normal polarity arc; the 

back-arc (inner-arc) basin (Fig. 14) develops as a normal-trapped marginal 

basin (Fig. 17c). This model is basically a Japan sea-type (Mitchell and 

Reading, 1969) orogen (i.e., a continent bordered by a marginal sea with a 

nearby arc offshore (Dickinson, 1977).
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Beginning sometime in the Triassic, scattered plutons were being emplaced 

in eastern California (Fig. 18) (Speed, 1978a,b). Simultaneously, ophiolite 

complexes were developing in northern California, signaling the beginning of 

major subduction systems and batholithic intrusions that were to dominate the 

Cordillera later in the Mesozoic.

Event 4: Cretaceous-Eocene Andean-Type Continental Margin

In the Jurassic-Cretaceous the continental margin evolved into a setting 

similar to that of the modern Andes with eastward subduction beneath the con 

tinent (Fig. 20) (Hamilton, 1969, 1978; Allmendinger et al., 1987). The Cre 

taceous geology of northern and central California is dominated by three 

coeval complexes, now considered to be synchronous responses to subduction of 

the Pacific lithosphere beneath the North American continent (Hamilton, 

1978). In the east is the Sierran magmatic arc and batholiths (Fig. 19), in 

the center is the fore-arc (outer arc) basin into which the Great Valley 

sequence accumulated, and to the west in thrust contact beneath the Great 

Valley sequence is the chaotic Franciscan melange (Fig. 20). East of the 

Sierra Nevada batholith the Basin and Range Province was undergoing fluvial 

and lacustrine sedimentation and minor amounts of volcanic activity (Fig. 20).

This Andean-type subduction was responsible for numerous thrust faults 

which telescoped sedimentary fades throughout much of the Cordillera. These 

thrusts are especially well exposed in the Basin and Range Province. The

Sevier overthrust belt of Cretaceous to Eocene age was the largest of the 

Mesozoic thrust belts, and extended from southern Nevada northward into Canada 

(Fig. 4). Armstrong (1968) estimated about 100 km of eastward crustal short 

ening associated with the Sevier system.
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Event 5: Oligocene-Recent Continental Extension

Extensional tectonics has characterized the western United States since 

at least the mid-Oligocene (Fig. 21). During continental extension two dif 

ferent tectonic interactions occurred along the North American plate to the 

west (Zoback et al., 1981). The earlier extension occurred during eastward 

subduction, and revived arc volcanism. This extension is characterized by 

low-angle normal faults (Allmendinger, 1987). These faults may have been the 

result of gravitational collapse of a tectonically thickened crust (Coney and 

Harms, 1984). In contrast, the typical basin and range morphology is charac 

terized by evenly spaced mountain blocks, bounded by high-angle normal 

faults. These faults were produced during east-southeast extension that 

began 10 ma (Zoback et al., 1981). Several models exist to explain this 

later intracontinental extension (Fig. 22) (Allmendinger, 1987).

Continental extension allowed massive volumes of siliceous ash-flow tuffs 

(ignimbrites) to extrude and cover much of the Basin and Range Province to 

thicknesses up to 10,000 feet (3,000 m) (Figs. 23,24,25) (Cook, 1965; Cook, 

1968). These fractured, welded ash-flow tuffs (ignimbrites) form many of the 

hydrocarbon reservoirs in eastern Nevada (Bortz and Murray, 1979; Bortz, 1983, 

1985).

During this same period of time large masses of marine graywacke, 

mudstones, and oceanic carbonate seamounts, that formed above a subduction 

zone, were being tectonically accreted on the western margin of northern 

California (Fig. 20) (Tarduno et al., 1986).
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Figure 22.Simplified models of Intracontinental extension. 
(A) Classic horst and graben model, (B) subhorizontal-decoupling- 
zone model, (C) anastomosing shear-zone or lenses model, and (D) 
crustal-penelrating shear-zone model

From Allmendinger et al (1987).
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DIXIE VALLEY PLAY 

Play Description and Type

During Middle Triassic times the Dixie Valley area (lat. 40°N. and long. 

117°45 f W.) was the site of 2,000 feet (1,200 m) of carbonate sedimentation 

within a back-arc basin (Figs. 26-28). These marine carbonates belong to the 

Star Peak Group (Figs. 29-32), and manifest themselves as a shoaling-upward, 

seaward-prograding (westerly) basin-plain to platform-margin complex (Fig. 33) 

(Nicols and Silberling, 1977). The Star Peak Group contrasts sharply with the 

unconformably underlying Lower Triassic Koipato Group, which is composed of 

siliciclastics and volcanics. Likewise, the Star Peak also is much different 

than the overlying Upper Triassic Auld Lang Syne Group, a sequence of 

metapelitic sediments and siliciclastic rocks (Nicols and Silberling, 1977).

Reservoir Rocks

Potential reservoirs in the Triassic rocks (ex. Favret Formation) could 

consist of carbonate turbidites and/or debris flows. However, whether or not 

significant amounts of mass-flow carbonates with good reservoir characteris 

tics exist is not known at this time. Other potential reservoir rocks would 

be in the platform-margin facies and dolomitized shelf-lagoon facies (Figs. 

32,33) (i.e., Home Station and Panther Canyon members of the Augusta Mountain 

Formation). However, this is speculative as these facies have not been 

evaluated for their reservoir characteristics. Another type of potential 

reservoir would be in the overlying densely welded and extensively fractured,
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DIXIE VALLEY
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Figure 27 .^P shoving paleogeographic terranes 
of early Mesozolc marine and younger volcanic 
and intrusive rocks of the vestern Great Basin. 
Dash-dot line is isotopic 0.706 line.

Speed (1983).
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Figure 28. Paleogeographic map showing interpreted 
depostional setting for the Dixie Valley 
Play. Potential reservoir facies  carbonate 
turbidites, debris flows, overlying prograding 
platform rocks, and fractured ignimbrites
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32
Figure Time-stratigraphk correlation chart of the Star Peak Group at localities significant 

for stratigraphic nomenclature. Small circles represent occurrences of age-diagnostic fossils; 
stippled pattern indicates secondary dolomite; vertical ruling indicates stratigraphk hiatus, and 
diagonal ruling Indicates lack of data.

From Nicols and Silberling (1977).
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welded ash-flow tuffs (ignimbrites) of Tertiary age. The ignirabrites that 

occur in the mountain ranges surrounding Dixie Valley probably underly Dixie 

Valley, and could be suitable as reservoir rocks. These same types of rocks 

form reservoirs in the oil fields of Railroad Valley in eastern Nevada (Bortz 

and Murray, 1979).

Traps and Seals

Both structural and stratigraphic traps could be expected if the Dixie 

Valley Basin has undergone similar Cenozoic structural modifications as in 

other parts of the Basin and Range Province. In this respect, one would be 

employing an Eagle Springs oil-field model (i.e., the first oil field dis 

covered in Nevada), which utilizes both structural and stratigraphic traps 

(Fig. 34).

A seismic profile across the Carson Sink Valley (Fallen Basin), ten miles 

(16 km) west of Dixie Valley reveals an overall structural pattern similar to 

that in Railroad Valley (Figs. 35,37). It is quite probable that the struc 

ture of Dixie Valley would be similar to that of Carson Sink Valley (Fallen 

Basin).

Source Rocks

The petroleum industry is attracted to this area because the Triassic 

basinal sediments may be potential source rocks (Bortz, 1983, 1985). The Fos 

sil Hill member of the Middle Triassic Favret Formation is a 600-foot-thick 

sequence (180 m) of dark-gray calcareous shale and lime mudstone which crops 

out in the mountain ranges flanking the northern part of Dixie Valley
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Flgur* 3SGenerallzed geologic map of the Fallon basin compiled from Page (1965), Wlltden & Speed (1974), and unpublished 
geologic maps from the Southern Pacific Company.

From Hastings (1979).
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Figure -Subsurface structure conlour map of the northern Fallon basin drawn on the base of the Tertiary from reconnaissance 
Mlsmlc and gravity data.

From Hastings (1979).
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(Figs. 30,31,38). This sequence contains ammonoids which, when broken open, 

commonly yield hydrocarbons (Figs. 39,40) (Nicols and Silberling, 1977, 

p. 21). If the Favret Formation is a good source rock for hydrocarbons, its 

presence beneath the Cenozoic fill in Dixie Valley is highly probable.

Cenozoic lacustrine sediments are also a type of potential source rock in 

the Basin and Range Province (Fouch, 1979; Fouch et al., 1979; Poole et al., 

1983; Poole and Claypool, 1984; Sandberg, 1983). In the Carson Sink Valley 

(Figs. 38,41) 5,000 feet (1,525 m) of silts and clays have excellent source- 

rock potential, but temperatures and depth of burial suggest that only modest 

amounts of oil have been generated from these rocks (Hastings, 1979).

Potential source rocks in the Paleozoic have been analyzed for their 

thermal maturity. Data based on conodont alteration index (CAI) values 

suggest that the Paleozoic sediments in western Nevada have been intensely 

baked and have CAI values 4.5 (Fig. 42) (Epstein et al., 1977).

Depth of Occurrence

The depth of the reservoir targets are uncertain, but may be on the order 

of 5,000-10,000 feet (1,500-3,000 m) for Tertiary ignimbrites, and 10,GOO- 

15,000 feet (3,000-4,500 m) for Mesozoic carbonates.

Exploration Status

At least a dozen geothermal wells have been drilled in Dixie Valley which 

range in depth from 3,000-12,000 feet (900-3,750 m) (Fig. 38) (Bortz, 1985). 

The only well drilled as an oil and gas exploratory well is the Standard-Amoco 

No. 1 S.P. Land Co. (Sec. 33, T. 24 N., R. 33 E.). This is located in the
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Figure '  Dixie Valley erea. Qs - Quaternary alluvial and playa deposits; Qb - Qua 
ternary basalts; TV - Tertiary volcanics; J*s - Upper Triassic and Lover 
Jurassic sediments and volcanic rocks; 1»c - Lower, Middle, and Upper Triassic 
(Tobln, Dixie Valley, Favret and Augusta Mtns. fos.); *k - Lower Triassic 
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From Bortz (1983).

Figure  * '  Concretion of calcareous mid stone ' 
from Triassic Favret formation in 
the August Mountains - chambers of 
this ammonite contained liquid 
hydrocarbons.

Figure 40 Outcrop of the Fossil Bill aeaber 
* of the Favret formation in the 

Augusta Mountains.

From Bortz (1983).
From Bortz (1983)
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adjacent Carson Sink Valley (Fallon Basin) (Fig. 38). This well penetrated 

11,000 feet (3,300 m) of Tertiary playa sediments and volcanics (Fig. 41). 

Oil and gas shows, including free oil in vugs at the top of a basalt core at 

8,168 feet (2,490 m) were present in the well. Results of formation tests of 

selected intervals showed that reservoir rocks were absent (Hastings, 1979). 

As discussed above, potential lacustrine source rocks are available, but they 

have not been subjected to sufficiently high temperatures to generate large 

quantities of hydrocarbons.
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